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Abstract

We study a nonisothermal gas absorption from a rising short gas plug using an approximation of the infinite dilution of absorbate and
taking into account the effect of thermal diffusion on the rates of heat and mass transfer. Short contact time solutions of energy and mass
conservation equations are obtained by a similarity method. It is shown that for absorption of ammonia and hydrogen chloride by water
and water vapor by aqueous solution of LiBr neglecting effect of thermal diffusion results in overestimating the rate of mass transfer
during absorption.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Coupled heat and mass transfer during nonisothermal
gas absorption by liquid from gas plugs has been analyzed
in a number of studies (see [1–3]). It was shown that for
absorption accompanied by a thermal effect, the concentra-
tion and temperature fields are interdependent. The expres-
sion obtained in [2] for mass transfer coefficient during
nonisothermal absorption, in the limiting case of absorp-
tion without thermal effect, recovers the formulas derived
previously by van Heuven and Beek [4]. In all these studies,
the effect of thermal diffusion was assumed to be negligibly
small. At the same time, thermal diffusion may become
important for gas plugs with short time of gas–liquid con-
tact whereby large concentration and temperature gradi-
ents occur. In this study we develop a model of heat and
mass transfer during gas plug dissolution, for evaluating
the contribution of thermal diffusion to the rate of absorp-
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tion. A short-exposure time solution is obtained by a sim-
ilarity method.
2. Description of the model

Consider a gas plug rising with a constant velocity U in
a vertical channel filled with a liquid. Schematic view of a
gas plug and the system of coordinates, attached to a rising
gas plug, are shown in Fig. 1. Gas plug is assumed to be
short, i.e. LB 6 2dch. In the vicinity of the nose and at the
lateral surface of a gas plug, where mass and heat transfer
occur, we adopt the usual assumption of a streamline flow.
Consider the coupled mass and heat transfer during
absorption of a pure soluble gas from a rising gas plug in
a channel accompanied by a thermal effect. The problem
is solved in the approximation of the infinite dilution of
absorbate in the absorbent. The thermodynamic parame-
ters of the system are assumed to be constant, and only
the resistance to mass and heat transfer in the liquid phase
is taken into account. Assume that heat released during
absorption is dissipated in a liquid phase, where it causes
an increase of the liquid temperature. A difference between
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Fig. 1. Schematic view of a short gas plug.
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the interface temperature and the temperature in the bulk
of liquid appears due to the thermal effect of gas absorp-
tion. In the further analysis we take into account the con-
tribution of thermal diffusion to the rate of absorption.
Consequently, there is coupling between mass and heat
transfer. The equilibrium condition at the gas–liquid inter-
face is described by linear dependence of concentration on
temperature (see [5]). Assume that development of thin dif-
fusion and temperature boundary layers in a liquid begins
at the leading edge of a gas plug, and convective diffusion
and heat transfer are determined by fluid velocity at the gas
plug surface. The gas plug–liquid interface is assumed to be
a surface of revolution obtained by the rotation of a curve
r(z) around a z-axis. The equation of this curve r(z) was
derived in [6]. A differential mass balance equation for
the absorbing component in cylindrical coordinates read

oNAz

oz
þ 1

r
o

or
ðrN ArÞ ¼ 0; ð1Þ

where r – radial coordinate, z – axial coordinate. Expres-
sions for mass flux density of absorbate in radial and axial
directions in Eq. (1), NAr and NAz , accounting for thermal
diffusion effect read (see [7,8])
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where D is the molecular diffusion coefficient, D0 is the ther-
mal diffusion coefficient of the solution, xA is the weight
fraction of the absorbate, q is the density of solution, vr,
vz, are the velocity components and T is the temperature
of the liquid. Equation of continuity written in cylindrical
coordinates reads
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Substituting expressions for N Ar and NAz (Eqs. (2) and (3))
into Eq. (1) and using Eq. (4) we arrive at the following
equation of convective diffusion:
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where r = D0/D is Soret coefficient. Energy conservation
equation can be written as follows:
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where a is the coefficient of thermal diffusivity of a liquid.
For small rates of mass transfer the velocity components
vr and vz in Eqs. (5) and (6) can be determined from the
solution of the hydrodynamic equations with zero mass
flux at the interface. In order to simplify Eq. (5) we intro-
duce the stream function w and velocity potential / as
follows:
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Equation of continuity, and the requirement that vorticity
in the potential flow vanishes, yield
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Taking into account that Peclet number Pe� 1, where
Pe = Udch/D, U – velocity of a gas plug rising in a stag-
nant fluid, dch – channel diameter, neglecting molecular
diffusion along the streamlines, and following the ap-
proach suggested in [9], Eq. (5) can be rewritten as
follows:
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Since the diffusion boundary layer is very thin, it can be as-
sumed that r is a function of / only. Then following the
procedure suggested in [9], let us introduce a new variable
l defined by the following relation: ol

o/ ¼ r2. Function l is
determined by integration along the gas plug surface, s is
the length of the arc measured from the gas plug nose
(see Fig. 1) and v = o//os, where v2 ¼ v2

r þ v2
z (for details

see [9]):
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Using simple geometric arguments we find that
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where g – acceleration of gravity, l0 – shape factor of a gas
plug which was introduced in [4] and tabulated in [9]. Com-
bining Eqs. (9) and (10) yields
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The last term in the r.h.s. of Eq. (12) accounts for the ef-
fects of thermal diffusion. Following similar approach we
arrived at the energy conservation equation taking into ac-
count that Lewis number is small, Le = D/a� 1:

oT
ol
¼ a

o
2T

ow2
: ð13Þ

The initial and boundary conditions to Eqs. (12) and (13)
read

T ¼T 0; xA ¼ xA0
at l ¼ 0 and at w!1; ð14Þ

T ¼T s; xA ¼ xAs at w ¼ 0: ð15Þ

Introducing a new variables
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Eqs. (12)–(15) can be rewritten as follows (for details see
[10,11]):
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x ¼ xAs ; T ¼ T s at gc ¼ gT ¼ 0; ð19Þ
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where xAs – weight fraction of the absorbate at the gas–li-
quid interface, xA0

– weight fraction of the absorbate at
the inlet, Ts – temperature of liquid at the gas–liquid inter-
face, T0 – temperature in the bulk of liquid. Solution of Eq.
(18) with boundary conditions (19) and (20) reads

T ¼ ðT s � T 0ÞerfcðgTÞ þ T 0: ð21Þ

During gas absorption in a liquid, Le� 1 and the thick-
ness of the diffusion boundary layer is much smaller than
the thickness of the temperature boundary layer. The latter
condition allows us to expand the solution for temperature
in Taylor series of gT in the vicinity of gT = 0 and to sub-
stitute this expansion in Eq. (17). The first two terms of
expansion of Eq. (21) are as follows:
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Eqs. (17) and (22) yield
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Solution of Eq. (23) reads
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where k ¼ 2r�ðT s�T 0ÞLe1=2ffiffi
p
p . For small k (k� 1) Eq. (24) can be

expanded in Taylor series of the parameter k. Keeping only
the first two terms in the expansion yields
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For the case of nonisothermal absorption, the unknown
values of concentration and temperature at the gas–liquid
interface are found from the following equations:

xA ¼ dT þ b at gc ¼ gT ¼ 0 ð26Þ

and
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where at k is a thermal conductivity of a liquid, b is a non-
dimensional coefficient, d is a dimensional coefficient [T�1],
L – heat of absorption. Eq. (26) describes a condition of
equilibrium at the gas–liquid interface (see, e.g. [5]), and
Eq. (27) implies that all the heat which is released during
absorption is dissipated in the liquid phase. Note that for
most gases the coefficient d in Eq. (26) is negative. Eqs.
(21), (24) and (26), (27) yield expressions for Ts and xAs :
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where Le ¼ D
a, K ¼ cp

dL, cp – specific heat, x0A0
¼ dT 0 þ b is the

equilibrium concentration at the initial temperature,
T 00 ¼ ðxA0

� bÞ=d is the equilibrium temperature at the ini-
tial concentration. Note that coefficients d and b can be ex-
pressed through T00 and x0A0

:
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Eq. (25) yields the following formula for the normalized
mass flux:
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where (see [3])
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X = r(T00 � T0) is the dimensionless parameter which char-
acterizes the sensitivity of a system to thermal diffusion, Qc

– mass flux from a gas plug, while taking into account the
effect of thermal diffusion, Qc0 – mass flux from a gas plug
during nonisothermal absorption, while neglecting thermal
diffusion. Note that the thermal effect of absorption of
ammonia and hydrogen chloride by water and water vapor
by aqueous solution of LiBr is positive (L > 0). At the same
time, for all these gases the concentration of saturation de-
creases with temperature increase (d < 0), and the normal-
ized heat of absorption K is negative (K < 0). For gas
absorption in water at normal temperature and pressure,
T00 > T0, Soret coefficient r is always positive (see, e.g.
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[12]) and the parameter X is also positive. Consequently,
Eq. (30) implies that ignoring the effect of thermal diffusion
results in overestimating the rate of mass transfer during
nonisothermal absorption. We evaluated the normalized
mass flux using Eq. (30) for ammonia–water, hydrogen
chloride–water and water vapor-aqueous solution of LiBr.
The values of the normalized mass fluxes for these systems
are equal to 0.998, 0.996 and 0.999, respectively. Conse-
quently, the relative differences of the mass fluxes
½ðQc0 � QcÞ=Qc0� � 100% for these systems are equal to
0.2%, 0.4% and 0.1%, correspondingly.

3. Conclusions

We studied analytically the effect of thermal diffusion on
heat and mass transfer during gas absorption from a rising
short gas plug for short time of contact using a similarity
method. The obtained results show that the temperature
and concentration distributions in thermal and diffusion
boundary layers in a liquid surrounding a gas plug depend
on three dimensionless parameters: the Lewis number, Le,
the normalized heat of absorption, K, and the thermal dif-
fusion parameter, X. These three parameters determine the
rate of mass transfer during gas plug dissolution in liquid.
It is shown that for absorption of ammonia and hydrogen
chloride by water and water vapor by aqueous solution of
LiBr, neglecting thermal diffusion results in overestimating
the rate of mass transfer during nonisothermal absorption.
Overestimating the rate of mass transfer becomes more
pronounced with the increase of Lewis number (Le), the
difference between the equilibrium temperature at the ini-
tial concentration and initial temperature (T00 � T0), Soret
coefficient (r) and with the decrease of the normalized heat
of absorption K.
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